Skip to content

10-1 Statistical Mechanics

10.1.1 Very Large Numbers

Before getting started with real plasma physics concepts, we need to quickly review some statistical mechanics with the goal of deriving the Maxwell-Boltzmann distribution.

As we all know, if we have N N unique objects, there are N! N! ways of arranging them. If n1nk n_1 \ldots n_k are identical with N things, the number of combinations is

N!n1!nk! \frac{N!}{n_1 ! \ldots n_k !}

What does probability have to do with a velocity distribution? Consider the one-dimensional random walk, in which we take N N steps, and at each step we move in a random direction. We take nr n_r steps to the right and Nnr N - n_r steps to the left. For a random walk we assume the probability of going in each direction is the same

Pr=p=12Pl=q=12 P_r = p = \frac{1}{2} \qquad P_l = q = \frac{1}{2}

After taking N N steps, the probability of taking nr n_r steps to the right and (Nnr) (N - n_r) steps to the left is

P(nr)=N!nr!(Nnr)!pnrqnr P(n_r) = \frac{N !}{n_r ! (N - n_r)!} \cdot p^{n_r} q^{n_r}

We are also interested in the final destination, which is the net number of steps to the right

mr=nrnl=2nrN m_r = n_r - n_l = 2 n_r - N

If we have a bias to move in a particular direction, then pq p \neq q and the distribution P(nr) P(n_r) will be shifted towards the bias.

Of course, if we have a very large N N we aren't going to be able to compute P(nr) P(n_r) directly. We've got our handy dandy natural logarithm to help us.

lnN!=lnN+ln(N1)++1 \ln N! = \ln N + \ln (N - 1) + \ldots + 1

ln(N+1)!=ln(N+1)+lnN! \ln (N + 1) ! = \ln (N + 1) + \ln N!

lnN!Nln(N+1)!lnN!N(N1)=ln(N+1)lnN \pdv{\ln N!}{N} \approx \frac{\ln(N+1)! - \ln N!}{N - (N-1)} = \ln(N+1) \approx \ln N

Recall our expression for the probability distribution

P(nr)=N!nr!(Nnr)!pnrqNnr P(n_r) = \frac{N!}{n_r !(N - n_r)!} p^{n_r} q^{N- n_r}

lnP(nr)=lnN!lnnr!ln((Nnr)!)+nrlnp+(Nnr)lnq \rightarrow \quad \ln P(n_r) = \ln N! - \ln n_r ! - \ln ((N-n_r)!) + n_r \ln p + (N - n_r) \ln q

Now we apply the little log trick lnN!NlnN \pdv{\ln N!}{N} \approx \ln N

dlnP(nr)dnr=lnr+ln(Nnr)+lnplnq=0 \dv{\ln P(n_r)}{n_r} = - \ln r + \ln (N - n_r) + \ln p - \ln q = 0

ln(Nnrnrpq)=0 \qquad \rightarrow \qquad \ln \left( \frac{N - n_r}{n_r} \frac{p}{q} \right) = 0

(Nnr)p=nrq (N - n_r)p = n_r q

Np=nr(p+q) Np = n_r(p + q)

nr=Np \overline{n_r} = Np

Surprise surprise, the probability of getting a certain result is just the expectation value of that result. Can we also say anything about the width of the distribution? Taylor expand about nr=Np \overline{n_r} = N p and define η \eta by nr=Np+η n_r = N p + \eta

ln(P(nr))=ln(P(Np))+B1η+12B2η2+16B3η4 \ln (P(n_r)) = \ln(P(Np)) + B_1 \eta + \frac{1}{2} B_2 \eta^2 + \frac{1}{6} B_3 \eta^4

Bk=dklnP(nr)dnrk B_k = \frac{d^k \ln P(n_r)}{d n_r ^k}

dlnP(nr)dnr=lnnr+ln(Nnr)+lnplnq \dv{\ln P(n_r)}{n_r} = - \ln n_r + \ln (N - n_r) + \ln p - \ln q

B1=ln(nr)+ln(Nnr)+lnplnq B_1 = - \ln(n_r) + \ln (N - n_r) + \ln p - \ln q

=ln(Np)+ln(NNp)=0 = - \ln (Np) + \ln(N - Np) = 0

B2=1nr1Nnr=1Np1NNp=1Nqp B_2 = - \frac{1}{n_r} - \frac{1}{N - n_r} = - \frac{1}{Np} - \frac{1}{N - Np} = -\frac{1}{Nqp}

B3=1nr21(Nnr)21N2 B_3 = \frac{1}{n_r ^2} - \frac{1}{(N - n_r)^2} \approx \frac{1}{N^2}

B41N3 B_4 \approx \frac{1}{N_3}

The expansion converges for N>>η N >> \eta

ln(P(nr))ln(P(Np))121Nqpη2 \ln(P(n_r)) \approx \ln (P(Np)) - \frac{1}{2} \frac{1}{Nqp} \eta ^2

or

P(nr)=P(Np)eη22NpqP0=P(Np) P(n_r) = P(Np) e^{- \frac{\eta ^2}{2 Npq}} \qquad P_0 = P(Np)

P(η)=P0eη22Npq P(\eta) = P_0 e^{-\frac{\eta ^2}{2Npq}}

So what's the width?

η2=η2P(η)dηinftyP(η)dη=π4(12Npq)3/2π2(12Npq)1/2=2Npq2=Npq \langle \eta ^2 \rangle = \frac{ \int_{-\infty} ^\infty \eta ^2 P(\eta) \dd \eta }{\int_{-infty}^\infty P(\eta) \dd \eta} = \frac{ \frac{ \sqrt{\pi}}{4 \left( \frac{1}{2 N pq} \right) ^{3/2}}}{\frac{ \sqrt{\pi}}{2 \left( \frac{1}{2 N pq} \right)^{1/2}}} = \frac{2 Npq}{2} = Npq

So the uncertainty is δnr=Npq12N \delta n_r = \sqrt{ N pq} \approx \frac{1}{2} \sqrt{N} . For a very large N, the relative uncertainty δnr/N12N \delta n_r / N \approx \frac{1}{2 \sqrt{N}} diminishes and the distribution (centered at Np Np ) gets very narrow. The signal-to-noise will go as 1N \frac{1}{\sqrt{N}} .

Maxwell-Boltzmann Distribution Function

Suppose we've got a large number N of particles with total energy W W . What is the energy distribution among the particles?

We call a "state" a possible distribution (permutation) of energy among the particles which satisfies the constraints. The fundamental principle of statistical mechanics states that all states have an equal chance of being occupied, with the resulting combinatorial factor giving the distribution. Because the number of particles is very large, the distribution will be close to the distribution that has the largest number of states.

Label the particles by the energy they have. Let ni n_i be the number of particles with energy between ϵi \epsilon_i and ϵi+1=ϵi+δϵ \epsilon_{i+1} = \epsilon_i + \delta \epsilon . Choose k k different energy ranges:

i=0kni=Ni=1kϵini=W= total energy \sum_{i = 0} ^k n_i = N \qquad \sum_{i=1} ^k \epsilon_i n_i = W = \text{ total energy}

The number of states with a given distribution is just a partitioning (indistinguishable!) of the energy among k k bins, so

P=1NN!n1!nk!=N1!n1!nk!N!n1!nk! P = \frac{1}{N} \frac{N!}{n_1 ! \ldots n_k ! } = \frac{N-1!}{n_1 ! \ldots n_k ! } \approx \frac{N!}{n_1 ! \ldots n_k ! }

We know that the distribution will be closely centered about the maximum of P, subject to the conservation constraints of energy and particles

δN=0=1kδni \delta N = 0 = \sum _1 ^ k \delta n_i

δW=0=1kϵiδni \delta W = 0 = \sum_1 ^k \epsilon_i \delta n_i

Going back to our log trick to find the critical point

δlnP=0 \delta \ln P = 0

lnP=lnN!1klnni! \ln P = \ln N! - \sum_1 ^k \ln n_i !

δlnP=1klnniδni=0 \delta \ln P = - \sum_1 ^k \ln n_i \delta n_i = 0

Let λ \lambda be the Lagrange multiplier for δN \delta N and β \beta be the Lagrange multiplier for δW \delta W , so

(lnni+λ+βϵi)δni=0 (\ln n_i + \lambda + \beta \epsilon_i) \delta n_i = 0

lnni=0λβϵi \ln n_i = 0 \lambda - \beta \epsilon_i

ni=eλβϵi=nλeβϵi n_i = e^{-\lambda - \beta \epsilon_i} = n_\lambda e^{-\beta \epsilon_i}

Values of nλ n_\lambda just come from the real constraints N N and W W

0nλeβϵdϵ=N \int _0 ^\infty n_\lambda e^{- \beta \epsilon} \dd \epsilon = N

0ϵnλeβϵdϵ=W \int_0 ^\infty \epsilon n_\lambda e^{- \beta \epsilon} \dd \epsilon = W

Putting in our constraints, out pops the Maxwell-Boltzmann distribution

f(v)dv=n(m2πkT)3/2eϵ/kTϵ= KE + PE  f(\vec v) \dd \vec v = n \left( \frac{m}{2 \pi k T} \right) ^{3/2} e^{- \epsilon / kT} \qquad \epsilon = \text{ KE + PE }

Example: Distribution under Gravity

If we have a bunch of particles under the influence of gravity, the energy is

ϵ=12mv2+mgz \epsilon = \frac{1}{2} m v^2 + mgz

The distribution is

f(v)=n0(m2πkT)3/2e(12mv2+mgz)/kT f(v) = n_0 \left( \frac{m}{2 \pi k T} \right) ^{3/2} e^{-( \frac{1}{2} m v^2 + mgz)/kT}

=n(z)(m2πkT)3/2e12mv2/kT = n(z) \left( \frac{m}{2 \pi k T} \right) ^{3/2} e^{-\frac{1}{2} m v^2 / kT}

n(z)=n0emgz/kT n(z) = n_0 e^{- mgz / kT}

In a collisionless picture, the velocity spread is the same at all heights (kT kT is not a function of z). However lower energy particles do not make it to a higher z. We end up with a density drop with increasing z z .