Skip to content

10.2 Review of E&M

Homework group: just me n leek42@uw.edu

Realistically, all of the E&M review comes from https://peppyhare.github.io/griffiths-em/

10.1.1 Maxwell Stress Tensor

The Maxwell stress tensor encompasses the way that electromagnetic fields an exert forces/stresses in 3D space:

p= momentum  \vec p = \text{ momentum }

The basic force laws of E&M are

dpdt=q(E+v×B) \dv{\vec p}{t} = q \left( \vec E + \vec v \cross \vec B \right)

On an element of volume, the change in momentum is

dPdt=V(ρE+j×B)dV \dv{P}{t} = \int_V (\rho E + j \cross B) \dd V

The maxwell equations give the source terms as

ρ=ϵ0Ej=1μ0(×Bμ0ϵ0Et) \rho = \epsilon _0 \div \vec E \qquad \vec j = \frac{1}{\mu_0} \left( \curl \vec B - \mu_0 \epsilon_0 \pdv{E}{t} \right)

ρE+j×B=Eϵ0(E)Bμ0×(×Bμ0ϵ0Et) \rho \vec E + \vec j \cross \vec B = \vec E \epsilon_0 (\div E) - \frac{B}{\mu_0} \cross ( \curl B - \mu_0 \epsilon_0 \pdv{E}{t} )

Using the chain rule t(E×B)=Et×B+E×Bt \pdv{}{t} (E \cross B) = \pdv{E}{t} \cross B + E \cross \pdv{B}{t} and B(B)=0 B( \div B) = 0

ρE+j×B=ϵ0E(E)B×(×B)μ0+ϵ0[E×Btt(E×B)] \rho E + j \cross B = \epsilon_0 E( \div E) - \frac{B \cross (\curl B)}{\mu_0} + \epsilon_0 \left[ E \cross \pdv{B}{t} - \pdv{}{t} (E \cross B) \right]

From Faraday, Bt×E \pdv{B}{t} \rightarrow \curl E

=ϵ0E(E)+B(B)μ0B×(×B)μ0ϵ0E×(×E)ϵ0t(E×B) = \epsilon_0 E(\div E) + \frac{B(\div B)}{\mu_0} - \frac{B \cross (\curl B)}{\mu_0} - \epsilon_0 E \cross (\curl E) - \epsilon_0 \pdv{}{t} (E \cross B)

Finally we've got everything in place to use the identity

12(B2)=12(BB)=(B)B+B×(×B) \frac{1}{2} \grad (B^2) = \frac{1}{2} \grad (\vec B \cdot \vec B) = (\vec B \cdot \grad) \vec B + \vec B \cross (\curl \vec B)

All together,

ρE+j×B=ϵ0[E(E)+(E)E12(E2)]+1μ0[B(B)+(B)B12(B2)]ϵ0t(E×B) \rho E + j \cross B = \epsilon_0 \left[ E ( \div E ) + (\vec E \cdot \grad) E - \frac{1}{2} \grad (E^2) \right] + \frac{1}{\mu_0} \left[B (\div B) + (\vec B \cdot \grad) B - \frac{1}{2} \grad (B^2) \right] - \epsilon_0 \pdv{}{t} ( \vec E \cross \vec B)

Integrating over a volume,

dPdt+ϵ0tE×BdV \dv{P}{t} + \epsilon_0 \pdv{}{t} \int \vec E \cross \vec B \dd V

=ϵ0[E(E)+(E)E12(E2)]+1μ0[B(B)+(B)B12(B2)]dV \qquad = \int \epsilon_0 \left[ E(\div E) + (E \cdot \grad) E - \frac{1}{2} \grad(E^2) \right] + \frac{1}{\mu_0} \left[ B(\div B) + (B \cdot \grad) B - \frac{1}{2} \grad (B^2) \right] \dd V

To simplify, we use another identity

E(E)+(E)E12(E2)=(EE121E2) E (\div E) + (E \cdot \grad) E - \frac{1}{2} \grad (E^2) = \div (\vec E \vec E - \frac{1}{2} \vec 1 E^2)

And the same is true for B \vec B . The momentum change expression is simplified if we define the Maxwell stress tensor as

T=ϵ0EE+BBμ0121(ϵ0E2+B2μ0) \vec T = \epsilon_0 \vec E \vec E + \frac{\vec B \vec B}{\mu_0} - \frac{1}{2} \vec 1 \left( \epsilon_0 E^2 + \frac{B^2}{\mu_0} \right)

That lets us re-cast the momentum change in a volume as a stress tensor on a surface

dpdt+ϵ0ddt(E×B)dV=TdV=Tn^da \dv{\vec p}{t} + \epsilon_0 \dv{}{t} \int ( \vec E \cross \vec B) \dd V = \int \div \vec T \dd V = \int \vec T \cdot \vu{n} \dd \vec a

Example: Application to FRC (Field-Reversed Configuration)

In a FRC confinement experiment, a bias field B B_{\infty} is applied and quickly reversed, resulting in poloidal fields opposite the bias current.

Figure 10.1

T=BBμ012I(B2μ0) \vec T = \frac{\vec B \vec B}{\mu_0} - \frac{1}{2} \vec I \left( \frac{B^2}{\mu_0} \right)

If we want to confine a plasma in the center of the FRC, we want to calculate the force on our plasma (electron fluid).

F=Tn^da \vec F = \int \vec T \cdot \vu n \dd a

At the left end of the configuration where we have B=Bzz^ \vec B = B_z \vu z and we define B1=Br,B2=Bz,B3=Bθ B_1 = B_r, B_2 = B_z, B_3 = B_\theta

T=[12B02μ0000B02μ012B02μ000012B02μ0] \vec T = \begin{bmatrix} - \frac{1}{2} \frac{B_0 ^2}{\mu_0} & 0 & 0 \\ 0 & \frac{B_0 ^2}{\mu_0} - \frac{1}{2} \frac{B_0 ^2}{\mu_0} & 0 \\ 0 & 0 & - \frac{1}{2} \frac{B_0 ^2}{\mu_0} \end{bmatrix}

Tn^=[012B02μ0z^0] \vec T \cdot \vu n = \begin{bmatrix} 0 \\ -\frac{1}{2} \frac{B_0 ^2}{\mu_0} \vu z \\ 0 \end{bmatrix}

Now what about at the sides? There, Br0 B_r \neq 0 and

Tn^=[12B2μ0+Br2μ0BrBzμ00BrBzμ012B2μ0+Bz2μ000012B2μ0][100]=[12B2μ0+Br2μ0BrBzμ00] \vec T \cdot \vu n = \begin{bmatrix} - \frac{1}{2} \frac{B^2}{\mu_0} + \frac{B_r ^2}{\mu_0} & \frac{B_r B_z}{\mu_0} & 0 \\ \frac{B_r B_z}{\mu_0} & - \frac{1}{2} \frac{B^2}{\mu_0} + \frac{B_z ^2}{\mu_0} & 0 \\ 0 & 0 & - \frac{1}{2} \frac{B^2}{\mu_0} \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} - \frac{1}{2} \frac{B^2}{\mu_0} + \frac{B_r ^2}{\mu_0} \\ \frac{B_r B_z}{\mu_0} \\ 0 \end{bmatrix}

The total force is the sum

F=Tn^da=(12B02μ0+12B02μ0)πa2z^+ contrib. from sides \vec F = \int \vec T \cdot \vu n \dd a = \left( - \frac{1}{2} \frac{B_0 ^2}{\mu_0} + \frac{1}{2} \frac{B_{0} ^2}{\mu_0} \right) \pi a ^2 \vu z + \text{ contrib. from sides}

By symmetry, the r r components add to zero

Fz=πa22μ0(B2B02)+2πaμ0BrBzdz F_z = \frac{\pi a^2}{2 \mu_0} (B_{\infty} ^2 - B_0 ^2) + \frac{2 \pi a}{\mu_0} \int B_r B_z \dd z

Figure 10.2

The magnetic flux at the open ends must go somewhere

Φ=Bzπa2(1xs2) \Phi = B_z \pi a^2 (1 - x_s ^2)

2πaBrdz=dΦ 2 \pi a B_r \dd z = - \dd \Phi

Fz=12μ0πa2(Φ2Φ02)1μ0Φ0ΦΦπa2(1xs2)dΦ F_z = \frac{1}{2 \mu_0 \pi a^2} ( \Phi_{\infty} ^2 - \Phi_0 ^2 ) - \frac{1}{\mu_0 } \int_{\Phi_0} ^{\Phi_{\infty}} \frac{\Phi}{\pi a^2 ( 1 - x_s ^2)} \dd \Phi

Assume xs x_s is constant (or that it is an appropriate average value)

Fz=12μ0πa2(Φ2Φ02)Φ2Φ022μ0πa2(1xs2) F_z = \frac{1}{2 \mu_0 \pi a^2} ( \Phi_{\infty} ^2 - \Phi_0 ^2 ) - \frac{ \Phi_{\infty} ^2 - \Phi_0 ^2}{2 \mu_0 \pi a ^2 (1 - x_s ^2)}

=πa22μ0(B2B02)(111xs2) = \frac{\pi a^2}{2 \mu_0} ( B_\infty ^2 - B_0 ^2) \left( 1 - \frac{1}{1 - x_s ^2} \right)

=πa22μ0(B02B2)xs21xs2 = \frac{\pi a^2}{2 \mu_0 } ( B_0 ^2 - B_{\infty} ^2 ) \frac{x_s ^2}{1 - x_s ^2}

=Afrc2μ0(B02B2)(11xs2) = \frac{A_{frc}}{2 \mu_0} ( B_0 ^2 - B_{\infty} ^2 ) \left( \frac{1}{1 - x_s ^2} \right)

Where Afrc=πa2xs2 A_{frc} = \pi a^2 x_s^2 is the cross-sectional area of the FRC. So, in the simple picture the force is the same as the initial flux, reduced by an equivalent area of the FRC torus.