Skip to content

Formulary

Kinetic Description

dvdt=qimi(E+vi×B)+ji[dvijdtcollδ(rirj)] \dv{\vec v}{t} = \frac{q_i}{m_i} (\vec E + \vec v_i \cross \vec B) + \sum_{j \neq i} \left[ \left. \dv{\vec v_{ij}}{t} \right|_{coll} \delta(\vec r_i - \vec r_j) \right]

Bt=×E \pdv{\vec B}{t} = - \curl \vec E

1c2Et=×Bμ0iqiviδ(rri) \frac{1}{c^2} \pdv{\vec E}{t} = \curl \vec B - \mu_0 \sum_i q_i \vec v_i \delta (\vec r - \vec r_i)

B=0 \div \vec B = 0

E=1ϵ0iqiδ(rri) \div \vec E = \frac{1}{\epsilon_0} \sum_i q_i \delta (\vec r - \vec r_i)

Klimontovich equation:

dNdt=0=Nt+qi(qiN)Niδ(ppi)δ(qqi) \dv{N}{t} = 0 = \pdv{N}{t} + \pdv{}{q_i} \cdot (\dot{q_i} N) \\ N \equiv \sum_i \delta (p - p_i) \delta(q - q_i)

Plasma Fluid Description

Boltzmann Equation

fαt+vfαt+qαmα(E+v×B)fαv=fαtcoll=βαCαβ \pdv{f_\alpha}{t} + \vec v \cdot \pdv{f_\alpha}{t} + \frac{q_\alpha}{m_\alpha} (\vec E + \vec v \cross \vec B) \cdot \pdv{f_\alpha}{\vec v} = \left. \pdv{f_\alpha}{t} \right|_{coll} = \sum_{\beta \neq \alpha} C_{\alpha \beta}

Maxwellian distribution:

fα(v)=nα(mα2πT)3/2emα(vvα)22T f_\alpha (\vec v) = n_\alpha \left( \frac{m_\alpha}{2 \pi T} \right)^{3/2} e^{- \frac{m_\alpha(\vec v - \vec v_\alpha)^2}{2T}}

Moments of fluid model (moments of distribution \rightarrow moments of Boltzmann equation:

Continuity:nα=fαdvnαt+(nαvα)=0 \text{Continuity:} \qquad n_\alpha = \int f_\alpha \dd \vec v \\ \quad \rightarrow \pdv{n_\alpha}{t} + \div (n_\alpha \vec v_\alpha) = 0

Momentum:nαvα=vfαdvt(nαvα)+(nαvαvα)+1mαPαqαmαnα(E+vα×B)=βαwCαβdv \text{Momentum:} \qquad n_\alpha \vec v_\alpha = \int \vec v f_\alpha \dd v \\ \quad \rightarrow \quad \pdv{}{t} (n_\alpha \vec v_\alpha ) + \div (n_\alpha \vec v_\alpha \vec v_\alpha) + \frac{1}{m_\alpha} \div \vec P_\alpha - \frac{q_\alpha}{m_\alpha} n_\alpha ( \vec E + \vec v _\alpha \cross \vec B) = \sum_{\beta \neq \alpha} \int \vec w C_{\alpha \beta} \dd \vec v

ρα(vαt+vαvα)+Pα+Παqαnα(E+vα×B)=βαRαβ \rightarrow \rho_\alpha \left(\pdv{\vec v_\alpha}{t} + \vec v_\alpha \cdot \grad \vec v_\alpha \right) + \grad \vec P_\alpha + \div \vec \Pi_\alpha - q_\alpha n_\alpha (\vec E + \vec v_\alpha \cross \vec B) = \sum_{\beta \neq \alpha} \vec R_{\alpha \beta}

Energy:vvfαtdv=tvvfαdv=tEα/mαtPα \text{Energy:} \qquad \int \vec v \vec v \pdv{f_\alpha}{t} \dd \vec v = \pdv{}{t} \int \vec v \vec v f_\alpha \dd \vec v = \pdv{}{t} \vec E_\alpha / m_\alpha \rightarrow \pdv{}{t} \vec P_\alpha

32nα(Tαt+vαTα)+Pαvα+Παvα+hα=βαQαβ \rightarrow \quad \frac{3}{2} n_\alpha \left( \pdv{T_\alpha}{t} + \vec v_\alpha \cdot \grad T_\alpha \right) + P_\alpha \div \vec v_\alpha + \vec \Pi_\alpha \cdot \cdot \grad \vec v_\alpha + \div \vec h_\alpha = \sum_{\beta \neq \alpha} Q_{\alpha \beta}

Closure relations

hα=κTα \vec h_\alpha = - \kappa \grad T_\alpha

Πα=νvα \overline \Pi_ \alpha = \nu \grad \vec v_\alpha

Ideal MHD

Conservation Law Form of Ideal MHD

ρt+(ρv)=0 \pdv{\rho}{t} + \div (\rho \vec v) = 0

(ρv)t+[ρvvBBμ0+(p+B22μ0)I]=0 \pdv{(\rho \vec v)}{t} + \div \left[ \rho \vec v \vec v - \frac{\vec B \vec B}{\mu_0} + \left( p + \frac{B^2}{2 \mu_0} \right) \overline{I} \right] = 0

ϵt+[(ϵ+p+B22μ0)v(Bv)Bμ0]=0 \pdv{\epsilon}{t} + \div \left[ \left( \epsilon + p + \frac{B^2}{2 \mu_0} \right) \vec v - (\vec B \cdot \vec v) \frac{\vec B}{\mu_0} \right] = 0

Bt+(vBBv)=0 \pdv{\vec B}{t} + \div ( \vec v \vec B - \vec B \vec v) = 0

where

ϵ=1γ1p+12ρv2+B22μ0 \epsilon = \frac{1}{\gamma - 1} p + \frac{1}{2} \rho v^2 + \frac{B^2}{2\mu_0}

Static Equilibrium:

j×B=p \vec j \cross \vec B = \grad p

B2μ0K=(p+B22μ0) \frac{B^2}{\mu_0} \vec K = \grad_\perp (p + \frac{B^2}{2 \mu_0})

KBBBB \vec K \equiv \frac{\vec B}{|B|} \cdot \grad \frac{ \vec B}{|B|}

Conservation of flux:

E+v×B=0 \vec E + \vec v \cross \vec B = 0

Bt=×E \pdv{\vec B}{t} = - \curl \vec E

ddt(Bρ)=Bρv \rightarrow \dv{}{t} \left( \frac{\vec B}{\rho} \right) = \frac{\vec B}{\rho} \cdot \grad \vec v

1D Equilibria

θ \theta -pinch

Bθ=0 B_\theta = 0

jθBz=dpdr j_\theta B_z = \dv{p}{r}

jθ=1μ0dBzdr j_\theta = - \frac{1}{\mu_0} \dv{B_z}{r}

p+Bz22μ0=B022μ0 \rightarrow p + \frac{B_z ^2}{2 \mu_0} = \frac{B_0 ^2}{2 \mu_0}

β=2a20arpB02/2μ0dr \langle \beta \rangle = \frac{2}{a^2} \int_0 ^a \frac{r p}{B_0 ^2 / 2 \mu_0} \dd r

q= q = \infty

W=μ0rBz2ddr(p+Bz22μ0)=0 W = \frac{\mu_0 r}{B_z ^2} \dv{}{r} \left( p + \frac{B_z ^2}{2 \mu_0} \right) = 0

Z-pinch

Bz=0 B_z =0

p=dpdr=jzBθ \grad p = \dv{p}{r} = - j_z B_\theta

ddr(p+Bθ22μ0)=Bθ2μ0r - \dv{}{r} \left( p + \frac{B_\theta ^2}{2 \mu_0} \right) = \frac{B_\theta ^2}{\mu_0 r}

β=2μ0B02πa20a2πrpdr=1 if p(a)=0 \langle \beta \rangle = \frac{2 \mu_0}{B_0 ^2 \pi a^2} \int _0 ^a 2 \pi r p \dd r = 1 \quad \text{ if } \quad p(a) = 0

q=S=0 q = S = 0

W=1 W = 1

Screw pinch

ddr(p+B22μ0)=Bθ2μ0r \dv{}{r} \left( p + \frac{B^2}{2 \mu_0} \right) = - \frac{B_\theta ^2}{\mu_0 r}

βt=2μ0Bz(a)2(1πa20a2πrpdr) \beta_t = \frac{2 \mu_0}{B_z (a) ^2} \left( \frac{1}{\pi a^2} \int_0 ^a 2 \pi r p \dd r \right)

βp=(1αtβt)1αt2a20a(1Bz2B02)rdr \beta_p = \left( 1 - \frac{\alpha_t}{\beta _t} \right)^{-1} \qquad \alpha_t \equiv \frac{2}{a^2} \int_0 ^a \left(1 - \frac{B_z ^2}{B_0 ^2} \right) r \dd r

q=2πrBzLBθ q = \frac{2 \pi r B_z}{L B_\theta}

qa=4π2a2B0μ0Ia q_a = \frac{4 \pi ^2 a^2 B_0}{\mu_0 I_a}

S=rqdqdr S = \frac{r}{q} \dv{q}{r}

W=Bθ2Bθ2+Bz2 W = - \frac{B_\theta ^2}{B_\theta ^2 + B_z ^2}

Stability

Shear:

S=2dq/qdV/V=2dlnqdlnV S = 2 \frac{ dq / q}{dV / V} = 2 \frac{d \ln q}{d \ln V}

q=# long windings# short windings=dψtdψp q = \frac{\text{\# long windings}}{\text{\# short windings}} = \dv{\psi_t}{\psi_p}

Shear for toroid

q=rBϕRBθ q = \frac{r B_\phi}{R B_\theta}

Shear for cylinder

q=2πrBzLBθ q = 2 \pi \frac{r B_z}{L B_\theta}

Well

W=dp+B2/2μ0/B2/2μ0dV/V W = \frac{ d \langle p + B^2 / 2 \mu_0 \rangle / \langle B^2 / 2 \mu_0 \rangle}{dV / V}

For stabilization, B2/2μ0 B^2 / 2 \mu_0 should increase faster than p p decreases

2D Equilibria

Grad-Shafranov Equation: Static toroidal equilibrium

p=jθ×Bϕ+jϕ×Bθ \grad p = \vec j_\theta \cross \vec B_\phi + \vec j_\phi \cross \vec B_\theta

Aϕ=ϕRϕ^ A_\phi = \frac{\phi}{R} \vu \phi

ϕ=ϕp2π \phi = \frac{\phi_p}{2 \pi}

Bθ=R^Rψz+z^RψR=ψR×ϕ^ \vec B_\theta = - \frac{\vu R}{R} \pdv{\psi}{z} + \frac{ \vu z}{R} \pdv{\psi}{R} = \frac{ \grad \psi}{R} \cross \vu \phi

FRBϕ F \equiv R B_\phi

ΔRR1RR+2z2 \Delta ^\star \equiv R \pdv{}{R} \frac{1}{R} \pdv{}{R} + \pdv{^2}{z^2}

Δψ=2ψz2+2ψR21RψR \Delta ^\star \psi = \pdv{^2 \psi}{z^2} + \pdv{^2 \psi}{R^2} - \frac{1}{R} \pdv{\psi}{R}

jϕ=1μ0RΔψϕ^ \vec j_\phi = - \frac{1}{\mu_0 R} \Delta ^\star \psi \vu \phi

jθ=1μ0R(F)×ϕ^ \vec j_\theta = \frac{1}{\mu_0 R} \grad (F) \cross \vu \phi

R2μ0pψ=ΔψFFψ R^2 \mu_0 \pdv{p}{\psi} = - \Delta ^\star \psi - F \pdv{F}{\psi}

q(ψ)=F(ψ)2πprdθR2Bθ q(\psi) = \frac{F(\psi)}{2 \pi} \oint_{p} \frac{r \dd \theta}{R^2 B_\theta}

Limits:

Force-free:jB \text{Force-free:} \qquad \vec j \parallel \vec B

Δψ+FF=0 \rightarrow \Delta ^\star \psi + F F' = 0

Connected θ pinch:FFΔψ \text{Connected $\theta$ pinch:} \qquad FF' \gg \Delta ^\star \psi

pjθ×Bϕ \rightarrow \grad p \approx \vec j_\theta \cross \vec B_\phi

Connected Z-pinch:FFΔϕ \text{Connected Z-pinch:} \qquad FF' \ll \Delta ^\star \phi

pjϕ×Bθ \rightarrow \grad p \approx j_\phi \cross B_\theta

MHD Stability

Linear stability

ρ1t=v1ρ0ρ0v1 \pdv{\rho_1}{t} = - \vec v_1 \grad \rho_0 - \rho_0 \div \vec v_1

B1t=×(v1×B0) \pdv{\vec B_1}{t} = \curl ( \vec v_1 \cross \vec B_0)

ρ0v1t=p1+j0×B1j1×B0 \rho_0 \pdv{\vec v_1}{t} = - \grad p_1 + \vec j_0 \cross \vec B_1 - \vec j_1 \cross \vec B_0

p1t=v1p0γp0v1 \pdv{p_1}{t} = - \vec v_1 \cdot \grad p_0 - \gamma p_0 \div \vec v_1

For linear perturbation ξ=0tv1dt \vec \xi = \int_0 ^t \vec v_1 \dd t the momentum equation becomes

ρ02ξt2=F(ξ) \rho_0 \pdv{^2 \xi}{t^2} = \vec F(\xi)

where

F(ξ)=(ξp0+γp0ξ)+1μ0[(×B0)××(ξ×B0)+××(ξ×B0)×B0] F(\xi) = \grad (\xi \cdot \grad p_0 + \gamma p_0 \div \xi) + \frac{1}{\mu_0} \left[ ( \curl \vec B_0) \cross \curl (\xi \cross \vec B_0) + \curl \curl (\xi \cross \vec B_0) \cross \vec B_0 \right]

Eigenvalues of 1ρ0F(ξ)=ω2ξ \frac{1}{\rho_0} \vec F (\xi) = \omega^2 \xi are real and ordered. Only need to check n=0 n=0 to determine stability/instability of configuration.

δW \delta W Approach

δW= \delta W = change in potential energy due to a displacement ξ \xi

δW<0instability \delta W < 0 \rightarrow \text{instability}

δW=12ξF(ξ)dV=δWF+δWS+δWV \delta W = - \frac{1}{2} \int \xi \cdot F(\xi) \dd V = \delta W_F + \delta W_S + \delta W_V

Surface term:

δWs=12dS(n^ξ)2(n^p0+[n^B022μ0]jump) \delta W_s = \frac{1}{2} \oint \dd S (\vu n \cdot \xi) ^2 \left( \vu n \cdot \grad p_0 + \left[ \vu n \cdot \grad \frac{B_0 ^2}{2 \mu_0} \right]_{jump} \right)

Vacuum term:

δWV=vacdVB12μ0 \delta W_V = \int_{vac} \dd V \frac{B_1 ^2}{\mu_0}

Plasma (free) term:

δWF=12dVB1,2μ0Shear Alfven+μ0B1,μ0B0ξp0B022Fast magnetosonic+Γp0ξ2Acoustic+j0B0B02(B0×ξ)B1Current-driven (kink)2(ξp0)(ξκ)pressure-driven (interchange/balooning) \delta W_F = \frac{1}{2} \int \dd V \frac{ |B_{1, \perp}|^2}{\mu_0} \quad \leftarrow \text{Shear Alfven} \\ + \mu_0 \left| \frac{B_{1, \parallel}}{\mu_0} - \frac{B_0 \xi \cdot \grad p_0}{B_0} ^2 \right|^2 \quad \leftarrow \text{Fast magnetosonic} \\ + \Gamma p_0 |\div \xi|^2 \quad \leftarrow \text{Acoustic}\\ + \frac{\vec j_0 \cdot \vec B_0}{B_0 ^2} (\vec B_0 \cross \vec \xi) \cdot \vec B_1 \quad \leftarrow \text{Current-driven (kink)} \\ - 2 ( \vec \xi \cdot \grad p_0)(\vec \xi \cdot \vec \kappa) \quad \leftarrow \text{pressure-driven (interchange/balooning)}

Shear Alfven, fast magnetosonic, and acoustic modes are stabilizing. Current-driven and pressure-driven modes can lead to instability.