Kinetic Description
dtdv=miqi(E+vi×B)+j=i∑[dtdvij∣∣∣∣∣collδ(ri−rj)]
∂t∂B=−∇×E
c21∂t∂E=∇×B−μ0i∑qiviδ(r−ri)
∇⋅B=0
∇⋅E=ϵ01i∑qiδ(r−ri)
Klimontovich equation:
dtdN=0=∂t∂N+∂qi∂⋅(⋅qiN)N≡i∑δ(p−pi)δ(q−qi)
Plasma Fluid Description
Boltzmann Equation
∂t∂fα+v⋅∂t∂fα+mαqα(E+v×B)⋅∂v∂fα=∂t∂fα∣∣∣∣∣coll=β=α∑Cαβ
Maxwellian distribution:
fα(v)=nα(2πTmα)3/2e−2Tmα(v−vα)2
Moments of fluid model (moments of distribution
→ moments of Boltzmann equation:
Continuity:nα=∫fαdv→∂t∂nα+∇⋅(nαvα)=0
Momentum:nαvα=∫vfαdv→∂t∂(nαvα)+∇⋅(nαvαvα)+mα1∇⋅Pα−mαqαnα(E+vα×B)=β=α∑∫wCαβdv
→ρα(∂t∂vα+vα⋅∇vα)+∇Pα+∇⋅Πα−qαnα(E+vα×B)=β=α∑Rαβ
Energy:∫vv∂t∂fαdv=∂t∂∫vvfαdv=∂t∂Eα/mα→∂t∂Pα
→23nα(∂t∂Tα+vα⋅∇Tα)+Pα∇⋅vα+Πα⋅⋅∇vα+∇⋅hα=β=α∑Qαβ
Closure relations
hα=−κ∇Tα
Πα=ν∇vα
Ideal MHD
Conservation Law Form of Ideal MHD
∂t∂ρ+∇⋅(ρv)=0
∂t∂(ρv)+∇⋅[ρvv−μ0BB+(p+2μ0B2)I]=0
∂t∂ϵ+∇⋅[(ϵ+p+2μ0B2)v−(B⋅v)μ0B]=0
∂t∂B+∇⋅(vB−Bv)=0
where
ϵ=γ−11p+21ρv2+2μ0B2
Static Equilibrium:
j×B=∇p
μ0B2K=∇⊥(p+2μ0B2)
K≡∣B∣B⋅∇∣B∣B
Conservation of flux:
E+v×B=0
∂t∂B=−∇×E
→dtd(ρB)=ρB⋅∇v
1D Equilibria
θ-pinch
Bθ=0
jθBz=drdp
jθ=−μ01drdBz
→p+2μ0Bz2=2μ0B02
⟨β⟩=a22∫0aB02/2μ0rpdr
q=∞
W=Bz2μ0rdrd(p+2μ0Bz2)=0
Z-pinch
Bz=0
∇p=drdp=−jzBθ
−drd(p+2μ0Bθ2)=μ0rBθ2
⟨β⟩=B02πa22μ0∫0a2πrpdr=1 if p(a)=0
q=S=0
W=1
Screw pinch
drd(p+2μ0B2)=−μ0rBθ2
βt=Bz(a)22μ0(πa21∫0a2πrpdr)
βp=(1−βtαt)−1αt≡a22∫0a(1−B02Bz2)rdr
q=LBθ2πrBz
qa=μ0Ia4π2a2B0
S=qrdrdq
W=−Bθ2+Bz2Bθ2
Stability
Shear:
S=2dV/Vdq/q=2dlnVdlnq
q=# short windings# long windings=dψpdψt
Shear for toroid
q=RBθrBϕ
Shear for cylinder
q=2πLBθrBz
Well
W=dV/Vd⟨p+B2/2μ0⟩/⟨B2/2μ0⟩
For stabilization,
B2/2μ0 should increase faster than
p decreases
2D Equilibria
Grad-Shafranov Equation: Static toroidal equilibrium
∇p=jθ×Bϕ+jϕ×Bθ
Aϕ=Rϕϕ^
ϕ=2πϕp
Bθ=−RR^∂z∂ψ+Rz^∂R∂ψ=R∇ψ×ϕ^
F≡RBϕ
Δ⋆≡R∂R∂R1∂R∂+∂z2∂2
Δ⋆ψ=∂z2∂2ψ+∂R2∂2ψ−R1∂R∂ψ
jϕ=−μ0R1Δ⋆ψϕ^
jθ=μ0R1∇(F)×ϕ^
R2μ0∂ψ∂p=−Δ⋆ψ−F∂ψ∂F
q(ψ)=2πF(ψ)∮pR2Bθrdθ
Limits:
Force-free:j∥B
→Δ⋆ψ+FF′=0
Connected θ pinch:FF′≫Δ⋆ψ
→∇p≈jθ×Bϕ
Connected Z-pinch:FF′≪Δ⋆ϕ
→∇p≈jϕ×Bθ
MHD Stability
Linear stability
∂t∂ρ1=−v1∇ρ0−ρ0∇⋅v1
∂t∂B1=∇×(v1×B0)
ρ0∂t∂v1=−∇p1+j0×B1−j1×B0
∂t∂p1=−v1⋅∇p0−γp0∇⋅v1
For linear perturbation
ξ=∫0tv1dt the momentum equation becomes
ρ0∂t2∂2ξ=F(ξ)
where
F(ξ)=∇(ξ⋅∇p0+γp0∇⋅ξ)+μ01[(∇×B0)×∇×(ξ×B0)+∇×∇×(ξ×B0)×B0]
Eigenvalues of
ρ01F(ξ)=ω2ξ are real and ordered. Only need to check
n=0 to determine stability/instability of configuration.
δW Approach
δW= change in potential energy due to a displacement ξ
δW<0→instability
δW=−21∫ξ⋅F(ξ)dV=δWF+δWS+δWV
Surface term:
δWs=21∮dS(n^⋅ξ)2(n^⋅∇p0+[n^⋅∇2μ0B02]jump)
Vacuum term:
δWV=∫vacdVμ0B12
Plasma (free) term:
δWF=21∫dVμ0∣B1,⊥∣2←Shear Alfven+μ0∣∣∣∣∣μ0B1,∥−B0B0ξ⋅∇p02∣∣∣∣∣2←Fast magnetosonic+Γp0∣∇⋅ξ∣2←Acoustic+B02j0⋅B0(B0×ξ)⋅B1←Current-driven (kink)−2(ξ⋅∇p0)(ξ⋅κ)←pressure-driven (interchange/balooning)
Shear Alfven, fast magnetosonic, and acoustic modes are stabilizing. Current-driven and pressure-driven modes can lead to instability.