Skip to content

9.3 - Electromagnetic Waves in Matter

9.3: Electromagnetic Waves in Matter

9.3.1: Propagation in Linear Media and Non-conductors

Maxwell's equations in linear media are

(i)D=ρf(Gauss’s law)(ii)B=0(Ng’s Law)(iii)×E=Bt(Faraday’s Law)(iv)×H=Jf+Dt(Ampere’s Law) \begin{aligned} (\text{i}) & \quad \div \vec{D} = \rho_f \quad \text{(Gauss's law)} \\ (\text{ii}) & \quad \div \vec{B} = 0 \quad \text{(Ng's Law)} \\ (\text{iii}) & \quad \curl \vec{E} = - \pdv{\vec{B}}{t} \quad \text{(Faraday's Law}) \\ (\text{iv}) & \quad \curl \vec{H} = \vec{J}_f + \pdv{\vec{D}}{t} \quad \text{(Ampere's Law)} \end{aligned}

In linear media, our constitutive relations are

D=ϵ0E+P=ϵE \vec D = \epsilon_0 \vec E + \vec P = \epsilon \vec E

and

H=Bμ0M=Bμ \vec H = \frac{\vec B}{\mu_0} - \vec M = \frac{\vec B}{\mu}

In charge-free region, the Maxwell equations in linear media look a lot like those in vacuum

ρf=0Jf=0 \rho_f = 0 \qquad \vec J_f = 0

(i)E=0(ii)B=0(iii)×E=Bt(iv)×B=μϵEt \rightarrow \begin{aligned} (\text{i}) & \quad \div \vec E = 0 \\ (\text{ii}) & \div \vec B = 0 \\ (\text{iii}) & \curl \vec E = - \pdv{\vec B}{t} \\ (\text{iv}) & \curl \vec B = \mu \epsilon \pdv{\vec E}{t} \end{aligned}

So that's nearly identical, except where we had ϵ0 \epsilon_0 now we have ϵ \epsilon , and where we had μ0 \mu_0 now we have μ \mu , so we can make these same substitutions in the solutions. The resulting wave equations in linear matter are

2E=1v22Et22B=1v22Bt2 \nabla ^2 \vec E = \frac{1}{v^2} \frac{\partial ^2 \vec E}{\partial t^2} \qquad \nabla ^2 \vec B = \frac{1}{v^2} \frac{\partial ^2 \vec B}{\partial t^2}

where now the speed is

v=1μϵ=speed of EM wave in linear medium=cn v = \frac{1}{\sqrt{\mu \epsilon}} = \text{speed of EM wave in linear medium} = \frac{c}{n}

where

nμμ0ϵϵ0= index of refraction  n \equiv \sqrt{\frac{\mu}{\mu_0} \frac{\epsilon}{\epsilon_0}} = \text{ index of refraction }

9.3.2: Reflection and Transmission at Normal Incidence

On of the most simple interesting situations that can arise when the index of refraction changes is when light crosses a sudden interface, i.e., what happens when light passes from one transparent medium into another? As in the case of waves on a string, we expect to get a reflected wave and a transmitted wave. Suppose we have waves incident on the boundary (in the x-y plane) between two media, call the media "1" and "2" with indices of refraction n1 n_1 and n2 n_2 . The z-axis is normal to the boundary.

Figure 9.14

Let's write our incident wave EI \vec{E_I} in so-called "phasor notation" (just complex exponential notation)

EI(r,t)=E0,Iei(kIrωt) \vec{E_I} (\vec r, t) = \vec{E_{0, I}} e^{i(\vec{k_I} \cdot \vec r - \omega t)}

where the actual wave itself is the real part of the complex exponential. We define the magnetic field in the same way

BI(r,t)=B0,Iei(kIrωt)=1v1(kI×EI) \vec{B_I} (\vec r, t) = \vec{B_{0, I}} e^{i(\vec{k_I} \cdot \vec r - \omega t)} = \frac{1}{v_1} ( \vec{k_I} \cross \vec{E_I})

We write down similar expressions

ER,BR \vec{E_{R}}, \quad \vec{B_{R}}

for the reflected wave, and

ET,BT \vec{E_{T}}, \quad \vec{B_{T}}

for the transmitted wave. At the z=0 z = 0 plane

E0,Iei(kIrωt)+E0,Rei(kTrωt)=E0,Tei(kTrωt) \vec{E_{0,I}} e^{i(\vec{k_I} \cdot \vec r - \omega t)} + \vec{E_{0,R}} e^{i(\vec{k_T} \cdot \vec r - \omega t)} = \vec{E_{0,T}} e^{i(\vec{k_T} \cdot \vec r - \omega t)}

That's true for all x,y x, y on the interface and for all time, so this immediately implies that ω \omega has to be the same for each of the waves (we already implicitly assumed this in the notation). So the ωt \omega t terms drop out of all three terms, and we can focus on the wavenumbers. It has to be the case that

kIr=kRr=kTr \vec{k_I} \cdot \vec r = \vec{k_R} \cdot \vec r = \vec{k_T} \cdot \vec r

kI,xx+kI,yy=kR,xx+kR,yy=kT,xx+kT,yy \rightarrow k_{I, x}x + k_{I, y} y = k_{R, x}x + k_{R, y} y = k_{T, x}x + k_{T, y} y

where so far there is no restriction on kz k_z . We can simply orient our xz x-z axes such that kI \vec{k_I} lies in the xz x-z plane. This means that kR \vec{k_R} and kT \vec{k_T} will also lie in the plane, and

kI,x=kIsinθI=kRsinθRsinθI=sinθR k_{I, x} = k_{I} \sin \theta_I = k_R \sin \theta_R \quad \rightarrow \quad \sin \theta_I = \sin \theta_R

θI=θR \rightarrow \quad \theta_I = \theta_R

kIsinθI=kTsinθTn1n2sinθI=sinθT k_{I} \sin \theta_I = k_T \sin \theta_T \quad \rightarrow \frac{n_1}{n_2} \sin \theta_I = \sin \theta_T

sinθTsinθI=n1n2 \rightarrow \frac{\sin \theta_T}{\sin \theta_I} = \frac{n_1}{n_2}

9.3.3 Reflection and Transmission at Oblique Incidence

In the more general case where the incoming wave hits the boundary at some angle θI \theta_I . Suppose that a monochromatic plane wave

EI(r,t)=E0Iei(kIrωt),BI(r,t)=1v1(k^I×EI) \vec{E_I}(\vec r, t) = \vec{E_0}_I e^{i(\vec{k_I} \cdot \vec r - \omega t)}, \qquad \vec{B_I}(\vec r, t) = \frac{1}{v_1} (\vu{k}_I \cross \vec{E_I})

approaches from the left. We'll get a reflected wave

ER(r,t)=E0Rei(kRrωt),BR(r,t)=1v1(k^R×ET) \vec{E_R}(\vec r, t) = \vec{E_0}_R e^{i(\vec{k_R} \cdot \vec r - \omega t)}, \qquad \vec{B_R}(\vec r, t) = \frac{1}{v_1} (\vu{k}_R \cross \vec{E_T})

and a transmitted wave

ET(r,t)=E0Tei(kTrωt),BT(r,t)=1v1(k^T×ET) \vec{E_T}(\vec r, t) = \vec{E_0}_T e^{i(\vec{k_T} \cdot \vec r - \omega t)}, \qquad \vec{B_T}(\vec r, t) = \frac{1}{v_1} (\vu{k}_T \cross \vec{E_T})

Figure 9.14

All three waves have the same frequency ω \omega . The three wave numbers are related by

kIv1=kRv1=kTv2=ωkI=kR=v2v1kT=n1n2kT k_I v_1 = k_R v_1 = k_T v_2 = \omega \qquad \rightarrow \qquad k_I = k_R = \frac{v_2}{v_1} k_T = \frac{n_1}{n_2} k_T

The combined fields in medium 1, EI+ER \vec{E_I} + \vec{E_R} and BI+BR \vec{B_I} + \vec{B_R} must be joined to the fields in medium 2 using the boundary conditions we get from Maxwell's equations. All of the boundary conditions share the generic structure

()ei(kIrωt)+()ei(kRrωt)=()ei(kTrωt) at z=0 ()e^{i(\vec{k}_I \cdot \vec r - \omega t)} + ()e^{i(\vec{k}_R \cdot \vec r - \omega t)} = ()e^{i(\vec{k}_T \cdot \vec r - \omega t)} \qquad \text{ at } z = 0

For now the important thing to notice is that the x, y, and t dependence is confined to the exponents. Because the boundary conditions must hold at all points on the plane, and for all times, these exponential factors must be equal at the boundary.

kIr=kRr=kTr \vec{k_I} \cdot r = \vec{k_R} \cdot r = \vec{k_T} \cdot r

or

x(kI)x+y(kI)y=x(kR)x+y(kR)y=x(kT)x+y(kT)y x(k_I)_x + y(k_I)_y = x(k_R)_x + y(k_R)_y = x(k_T)_x + y(k_T)_y

for all x and y, which can only be true if all both components are separately equal. So we may as well orient our axes so that kI \vec{k_I} lies in the xz x-z plane - our boundary condition ensures that if we do that, kR \vec{k_R} and kT \vec{k_T} will also lie in the plane.

The incident, reflected, and transmitted wave vectors form a plane (called the plane of incidence), which also includes the normal to the surface.

We can also say that

kIsinθI=kRsinθR=kTsinθT k_I \sin \theta_I = k_R \sin \theta_R = k_T \sin \theta_T

where θI \theta_I is the angle of incidence, θR \theta_R is the angle of reflection, and θT \theta_T is the angle of transmission, or more commonly the "angle of refraction," all of them measured with respect to the normal.

The angle of incidence is equal to the angle of refraction θI=θR \theta_I = \theta_R

And as for the transmitted angle

The law of refraction: sinθTsinθI=n1n2 \frac{\sin \theta_T}{\sin \theta_I} = \frac{n_1}{n_2}

So our exponential factors are dealt with, and we can move on to the Maxwell boundary conditions

(i)ϵ0(E0,I+E0,R)z=ϵ2(E0,T)z(ii)(B0,I+B0,R)z=(B0,T)z(iii)(E0,I+E0,R)x,y=(E0,T)x,y(iv)1μ1(B0,I+B0,R)x,y=1μ2(B0,T)x,y (i) \quad \epsilon_0 \left( \vec{E}_{0,I} + \vec{E}_{0,R} \right)_z = \epsilon_2 \left( \vec{E}_{0,T} \right) _z \\ (ii) \quad \left( \vec{B}_{0,I} + \vec{B}_{0,R} \right) _z = \left( \vec{B}_{0,T} \right)_z \\ (iii) \quad \left( \vec{E}_{0,I} + \vec{E}_{0,R} \right)_{x,y} = \left( \vec{E}_{0,T} \right)_{x,y} \\ (iv) \quad \frac{1}{\mu_1} \left( \vec{B}_{0,I} + \vec{B}_{0,R} \right) _{x,y} = \frac{1}{\mu_2} \left( \vec{B}_{0,T} \right)_{x,y}

where B0=1vk^×E0 \vec{B}_0 = \frac{1}{v} \vu k \cross \vec{E}_0 in each case.

If we now suppose the plane-polarized case, in which the polarization of the incident light is parallel to the plane of incidence, it follows that the reflected and transmitted waves are also polarized in this plane. Then (i) reads

ϵi(E0,IsinθI+E0,RsinθR)=ϵ2(E0,TsinθT) \epsilon_i \left( - \vec{E}_{0,I} \sin \theta_I + \vec{E}_{0,R} \sin \theta_R \right) = \epsilon_2 \left( - \vec{E}_{0,T} \sin \theta_T \right)

and (iv) says

1μ1v1(E0,IE0,R)=1μ2v2E0,T \frac{1}{\mu_1 v_1} \left( \vec{E}_{0,I} - \vec{E}_{0,R} \right) = \frac{1}{\mu_2 v_2} \vec{E}_{0,T}

Figure 9.15

We can reduce these down to

E0,IE0,R=βE0,T and E0,I+E0,R=αE0,T \vec{E}_{0,I} - \vec{E}_{0,R} = \beta \vec{E}_{0,T} \qquad \text{ and } \qquad \vec{E}_{0,I} + \vec{E}_{0,R} = \alpha \vec{E}_{0,T}

where β \beta is defined as

βμ1v1μ2v2=μ1n2μ2n1 \beta \equiv \frac{\mu_1 v_1}{\mu_2 v_2} = \frac{\mu_1 n_2}{\mu_2 n_1}

and α \alpha is

αcosθTcosθI \alpha \equiv \frac{\cos \theta_T}{\cos \theta_I}

Solving for the reflected and transmitted amplitudes, we obtain

E0,R=(αβα+β)E0,IE0,T=(2α+β)E0,I \vec{E}_{0,R} = \left( \frac{\alpha - \beta}{\alpha + \beta} \right) \vec{E}_{0,I} \qquad \vec{E}_{0,T} = \left( \frac{2}{\alpha + \beta } \right) \vec{E}_{0,I}

These are the Fresnel's equations for the case of polarization in the plane of incidence. Note that the transmitted wave is always in phase with the incident one; the reflected wave is either in phase ("right side up") if α>β \alpha > \beta , or π \pi out of phase ("upside down") if α<β \alpha < \beta

Of note is the interesting incident angle θB \theta_B where the reflected wave is completely extinguished. That happens when α=β \alpha = \beta , or

sin2θB=1β2(n1/n2)2β2 \sin^2 \theta_B = \frac{1 - \beta^2}{(n_1 / n_2)^2 - \beta^2}

In a typical case μ1μ2 \mu_1 \approx \mu_2 and βn2/n1 \beta \approx n_2 / n_1 so sin2θBβ2/(1+β2) \sin^2 \theta_B \approx \beta^2 / (1 + \beta^2) or

tanθBn2n1 \tan \theta_B \approx \frac{n_2}{n_1}

For s-polarized fields (i.e., the electric field is polarized perpendicular to the plane of incidence),

E0,R=(1αβ1+αβ)E0,IE0,T=21+αβE0,I \vec{E}_{0,R} = \left( \frac{1 - \alpha \beta}{1 + \alpha \beta} \right) \vec{E}_{0,I} \qquad \vec{E}_{0,T} = \frac{2}{1 + \alpha \beta} \vec{E}_{0,I}

To finish things up, let's look at the intensity of the reflected and transmitted waves, since that's what we're generally measuring directly. The intensity depends on the electric field magnitude and the index of refraction

I=12cϵ0E02(in vacuum) I = \frac{1}{2} c \epsilon_0 E_{0} ^2 \qquad \text{(in vacuum)}

=12vϵE02=12cnϵ0E02(in linear media) = \frac{1}{2} v \epsilon E_{0} ^2 = \frac{1}{2} c n \epsilon_0 E_0 ^2 \qquad \text{(in linear media)}

We get reflection and transmission coefficients defined as:

R=IRIIT=ITII R = \frac{I_R}{I_I} \qquad T = \frac{I_T}{I_I}

Plugging in our previous expressions for the incoming and reflected fields,

R=12cn1ϵ012cn1ϵ0(1β1+β)2=(n1n2n1+n2) R = \frac{\frac{1}{2} c n_1 \epsilon_0}{\frac{1}{2} c n_1 \epsilon_0} \left( \frac{1 - \beta}{1 + \beta} \right) ^2 = \left( \frac{n_1 - n_2}{n_1 + n_2} \right)

and the transmitted field,

T=12cn2ϵ012cn1ϵ0(21+n2n1)2=n2n14n12(n1+n2)2=4n1n2(n1+n2)2 T = \frac{\frac{1}{2} c n_2 \epsilon_0}{\frac{1}{2} c n_1 \epsilon_0} \left( \frac{2}{1 + \frac{n_2}{n_1} } \right) ^2 = \frac{n_2}{n_1} \frac{4 n_1 ^2}{(n_1 + n_2)^2} = \frac{4 n_1 n_2}{(n_1 + n_2)^2}

We should check that R+T=1 R + T = 1 , since we haven't got any absorption in our scenario:

R+T=(n1n2n1+n2)2+4n1n2(n1+n2)2=1 R + T = \left( \frac{n_1 - n_2}{n_1 + n_2} \right)^2 + \frac{4 n_1 n_2}{(n_1 + n_2)^2} = 1