Skip to content

Problems

Problem 5.5

A current I flows down a wire of radius a. (a) If it is uniformly distributed over the surface, what is the surface current density K? (b) If it is distributed in such a way that the volume current density is inversely proportional to the distance from the axis, what is J(s)?

K is the current per unit width \perp to the direction of the flow.

K=I2πa K = \frac{I}{2 \pi a}

Suppose instead the current is distributed somehow throughout the volume of the wire such that the current density is inversely proportional to the distance from the axis. Then

j=currentunit area  flow=dIda j = \frac{\text{current}}{\text{unit area } \perp \text{ flow}} = \frac{d I}{da_{\perp}}

We suppose that j has the form

j=const.s=cs j = \frac{\text{const.}}{s} = \frac{c}{s}

I=jda=0a02πcssdsdϕ=2πca \begin{aligned} I & = \int j \dd a_{\perp} \\ & = \int_{0} ^a \int_{0} ^{2 \pi} \frac{c}{s} s \dd s \dd \phi \\ & = 2 \pi c a \end{aligned}

so

c=I2πa c = \frac{I}{2 \pi a}

and

j=I2πas j = \frac{I}{2 \pi a s}

Problem 5.11

Find the magnetic field at point P on the axis of a tightly wound solenoid (helical coil) consisting of n turns per unit length wrapped around a cylindrical tube of radius a and carrying current I (Fig 5.25). Express your answer in terms of θ0 \theta_0 and θ2 \theta_2 (it's easiest that way). Consider the turns to be essentially circular and use the result of Ex 5.6. What is the field on the axis of an infinite solenoid (infinite in both directions)?

Figure 5.25

If I have n turns per unit length, then I have ndz n \dd z turns along a length dz \dd z (using the natural cylindrical coordinates of the problem). The total current of the resulting loop is Indz I n \dd z . From Ex 5.6, we know the magnetic field due to a circular loop is

dB(z)=μ0nIdz2a2(a2+z2)3/2ϕ^ \dd \vec{B}(z) = \frac{ \mu_0 n I \dd z}{2} \frac{a^2}{(a^2 + z^2 )^{3/2}} \vu{\phi}

From the geometry of Fig 5.25,

tanθ=azz=atanθ \tan \theta = \frac{a}{z} \quad \rightarrow \quad z = \frac{a}{\tan \theta}

dz=asin2θdθ \dd z = - \frac{a}{\sin ^2 \theta} \dd \theta

(a2+z2)3/2=(a2+a2tan2θ)3/2=(asinθ)3 (a^2 + z^2)^{3/2} = \left( a^2 + \frac{a^2}{\tan ^2 \theta} \right)^{3/2} = \left( \frac{a}{\sin \theta} \right)^3

B(z)=μ0nI2(asin2θdθ)a2(a3/sin3θ)=μ0nI2sinθdθ \begin{aligned} B(z) & = \frac{\mu_0 n I}{2} \left( - \frac{a}{\sin ^2 \theta} \dd \theta \right)\frac{a^2}{(a^3 / \sin ^3 \theta)} \\ & = - \frac{\mu_0 n I}{2} \sin \theta \dd \theta \end{aligned}

B(z)=μ0nI2θ1θ2sinθdθ=μ0nI2(cosθ2cosθ1) \begin{aligned} B(z) & = - \frac{\mu_0 n I}{2} \int _{\theta_1} ^{\theta_2} \sin \theta \dd \theta \\ & = \frac{\mu_0 n I}{2} (\cos \theta_2 - \cos \theta_1) \end{aligned}

For an infinite solenoid, we get

B(z)=μ0nI2(cos(0)cosθ1) B(z) = \frac{\mu_0 n I}{2} (\cos(0) - \cos \theta_1)

Problem 5.23

Find the magnetic vector potential of a finite segment of straight wire carrying a current I. [Put the wire on the z axis, from z1 z_1 to z2 z_2 , and use Eq. 5.66.] Check that your answer is consistent with Eq. 5.37.

Figure 5.e.23

We will get our vector potential using Eq 5.66, as suggested

A=μ04πIz^γ=μ0I4πz^z1z2dzz2+s2=μ0I4πz^[ln(z+z2+s2)]z1z2=μ0I4πln(z2+(z2)2+s2z1+(z1)2+s2)z^ \begin{aligned} \vec{A} & = \frac{\mu_0 }{4 \pi} \int \frac{I \vu{z}}{\gr} \\ & = \frac{\mu_0 I}{4 \pi} \vu{z} \int _{z_1} ^{z_2} \frac{dz}{\sqrt{z^2 + s^2}} \\ & = \left. \frac{\mu_0 I}{4 \pi} \vu{z} \left[ \ln \left( z + \sqrt{z^2 + s^2} \right) \right] \right|_{z_1} ^{z_2} \\ & = \frac{\mu_0 I}{4 \pi} \ln \left( \frac{z_2 + \sqrt{(z_2)^2 + s^2}}{z_1 + \sqrt{(z_1)^2 + s^2}} \right) \vu{z} \end{aligned}

To get the magnetic field, we need to take the curl of A. We can easily tell from the symmetry of the problem that the field will be "circumferential" (in the ϕ^ \vu{\phi} direction):

B=×A=Asϕ^=μ0I4π(1z2+(z2)2+s2s(z2)2+s21z1+(z1)2+s2s(z1)2+s2)ϕ^=μ0Is4π(z2z22+s2z22(z22+s2)1z22+s2z1z12+s2z12(z12+s2)1z12+s2)ϕ^=μ0Is4π(1s2)(z2z22+s21z1z12+s2+1)ϕ^=μ0I4πs(z2(z2)2+s2z1z12+s2)ϕ^ \begin{aligned} \vec{B} & = \curl \vec{A} = - \pdv{A}{s} \vu{\phi} \\ & = - \frac{\mu_0 I}{4 \pi} \left( \frac{1}{z_2 + \sqrt{(z_2)^2 + s^2}} \frac{s}{\sqrt{(z_2)^2 + s^2}} - \frac{1}{z_1 + \sqrt{(z_1)^2 + s^2}} \frac{s}{\sqrt{(z_1)^2 + s^2}} \right) \vu{\phi} \\ & = - \frac{\mu_0 I s}{4 \pi} \left( \frac{z_2 - \sqrt{z_2 ^2 + s^2}}{z_2 ^2 - (z_2 ^2 + s^2)} \frac{1}{\sqrt{z_2 ^2 + s^2}} - \frac{z_1 - \sqrt{z_1 ^2 + s^2}}{z_1 ^2 - (z_1 ^2 + s^2)} \frac{1}{\sqrt{z_1 ^2 + s^2}} \right) \vu{\phi} \\ & = - \frac{\mu_0 I s}{4 \pi} \left( - \frac{1}{s^2} \right) \left( \frac{z_2}{\sqrt{z_2 ^2 + s^2}} - 1 - \frac{z_1}{\sqrt{z_1 ^2 + s^2}} + 1 \right) \vu{\phi} \\ & = \frac{\mu_0 I}{4 \pi s} \left( \frac{z_2}{\sqrt{(z_2) ^2 + s^2}} - \frac{z_1}{\sqrt{z_1 ^2 + s^2}} \right) \vu{\phi} \end{aligned}

or, in terms of the angles made between r and the axis of the wire,

sinθ1=z1z12+s2 and sinθ2=z2z22+s2 \sin \theta_1 = \frac{z_1}{\sqrt{z_1 ^2 + s^2}} \quad \text{ and } \quad \sin \theta_2 = \frac{z_2}{\sqrt{z_2 ^2 + s^2}}

B=μ0I4πs(sinθ2sinθ1)ϕ^ \vec{B} = \frac{\mu_0 I}{4 \pi s} (\sin \theta_2 - \sin \theta_1) \vu{\phi}

which is just what we got back in Eq. 5.37.

Problem 5.26

(a) By whatever means you can think of (short of looking it up), find the vector potential a distance s from an infinite straight wire carrying a current I. Check that A=0 \div \vec{A} = 0 and ×A=B \curl \vec{A} = \vec{B} . (b) Find the magnetic potential inside the wire, if it has radius R and the current is uniformly distributed.

(a) As we said, because the current distribution is infinite, we cannot use Eq. 5.65 to get A. So let's use some symmetry. A must be parallel (or antiparallel) to I, and is a function of only s (the distance from the wire). In cylindrical coordinates, then, A=A(s)z^ \vec{A} = A(s) \vu{z} . We already calculated the magnetic field of an infinite straight wire via Biot-Savart:

B=μ0I2πsϕ^ \vec{B} = \frac{\mu_0 I}{2 \pi s} \vu{\phi}

We can work backwards to get A from B in this case.

B=×A=Asϕ^=μ0I2πsϕ^ \vec{B} = \curl \vec{A} = - \pdv{A}{s} \vu{\phi} = \frac{\mu_0 I}{2 \pi s} \vu{\phi}

Therefore

As=μ0I2πsA(r)=μ0I2πln(s/a)z^ \pdv{A}{s} = -\frac{\mu_0 I}{2 \pi s} \quad \rightarrow \quad \vec{A}(r) = - \frac{\mu_0 I}{2 \pi} \ln (s / a) \vu{z}

There is an arbitrary constant a here which doesn't actually affect our gauge at all:

A=Azz=0 \div \vec{A} = \pdv{A_z}{z} = 0

×A=Azsϕ^=μ0I2πsϕ^=B \curl \vec{A} = - \pdv{A_z}{s} \vu{\phi} = \frac{\mu_0 I}{2 \pi s} \vu{\phi} = \vec{B}

(b) Ampere's law in this case says

Bdl=B2πs=μ0Ienc=μ0Jπs2=μ0IπR2πs2=μ0Is2R2 \oint \vec{B} \cdot \dd \vec{l} = B 2 \pi s = \mu_0 I_{enc} = \mu_0 J \pi s^2 = \mu_0 \frac{I}{\pi R^2} \pi s^2 = \frac{\mu_0 I s^2}{R^2}

so, inside the wire,

B=μ0Is2πR2ϕ^ \vec{B} = \frac{\mu_0 I s}{2\pi R^2} \vu{\phi}

From the definition of A,

As=μ0I2πsR2A=μ0I2πR2bssds=μ0I4πR2(s2b2)z^ \pdv{A}{s} = - \frac{\mu_0 I}{2 \pi} \frac{s}{R^2} \rightarrow \vec{A} = -\frac{\mu_0 I}{2 \pi R^2} \int_{b} ^s s \, \dd s = - \frac{\mu_0 I}{4 \pi R^2} (s^2 - b^2) \vu{z}

Here, again, b is arbitrary, except that A must be continuous at R (we know that A is continuous!)

μ0I2πln(R/a)=μ0I4πR2(R2b2) - \frac{\mu_0 I}{2 \pi } \ln (R / a) = - \frac{\mu_0 I}{4 \pi R^2} (R^2 - b^2)

which means that we have to pick a and b such that

2ln(R/b)=1(b/R)2 2 \ln (R / b) = 1 - (b / R)^2

One such combination of a and b is a=b=R a = b = R . Then

A={μ0I4πR2(s2R2)z^ for sRμ0I2πln(s/R)z^ for sR \vec{A} = \begin{cases} - \frac{\mu_0 I}{4 \pi R^2} (s^2 - R^2) \vu{z} & \quad \text{ for } s \leq R \\ - \frac{\mu_0 I}{2 \pi} \ln(s / R) \vu{z}& \quad \text{ for } s \geq R \end{cases}

Problem 5.37

(a) A phonograph record of radius R, carrying a uniform surface charge sigma sigma is rotating at constant angular velocity ω \omega . Find its magnetic dipole moment. (b) Find the magnetic dipole moment of the spinning spherical shell in Example 5.11. Show that for points r>R r > R the potential is that of a perfect dipole.

(a) We get the monopole moment by integrating over the disk of the record. For a ring at radius r, m=Iπr2 m = I \pi r^2 . In this case,

Iσvdr=σωrdr I \rightarrow \sigma v \dd r = \sigma \omega r \dd r

so

m=0Rπr2σωrdr=πσωR4/4 m = \int _0 ^R \pi r^2 \sigma \omega r \dd r = \pi \sigma \omega R^4 / 4

(b) To get the magnetic dipole moment of our sphere, we need to integrate over the surface of the sphere:

Figure 5.37a

The total charge on the shaded ring is dq=σ(2πRsinθ)Rdθ \dd q = \sigma (2 \pi R \sin \theta) R \dd \theta . The time to make one revolution is dt=2πω \dd t = 2 \pi \omega , so the current in the ring is

I=dqdt=σωR2sinθdθ I = \frac{dq}{dt} = \sigma \omega R^2 \sin \theta \dd \theta

The area of the ring is π(Rsinθ)2 \pi (R \sin \theta)^2 , so the magnetic moment of the ring is

dm=(σωR2sinθdθ)πR2sin2θ \dd m = (\sigma \omega R^2 \sin \theta \dd \theta) \pi R^2 \sin ^2 \theta

and the total dipole moment is

m=σωπR40πsin3θdθ=(4/3)σωπR4 m = \sigma \omega \pi R^4 \int_0 ^\pi \sin ^3 \theta \dd \theta = (4 / 3) \sigma \omega \pi R^4

and we know that m points in the z^ \vu{z} direction (right-hand-rule), so

m=4π3σωR4z^ \vec{m} = \frac{4 \pi}{3} \sigma \omega R^4 \vu{z}

The dipole term in the multipole expansion for A is therefore

Adip=μ04π4π3σωR4sinθr2ϕ^=μ0σωR43sinθr2ϕ^ \vec{A}_{dip} = \frac{\mu_0}{4 \pi} \frac{4 \pi}{3} \sigma \omega R^4 \frac{\sin \theta}{r^2} \vu{\phi} = \frac{\mu_0 \sigma \omega R^4}{3} \frac{\sin \theta}{r^2} \vu{\phi}

This is actually the exact vector potential we calculated (Eq. 5.69); evidently a spinning sphere produces a perfect dipole field, with no higher multipole contributions.